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Measurements of the characteristics of small-amplitude shape oscillations of drops 
immersed in a host liquid have been carried out by acoustical means. The 
resonance frequencies of the first few modes have been measured, as well as the 
damping constant for the fundamental mode, as functions of the drop radius and 
viscosities of the two liquids. A qualitative photographic study during steady oscilla- 
tions has revealed a simple internal fluid-particle flow field with no circulation. The 
theory available a t  the present time has been found to  provide results which are in 
general agreement with experimental findings for low-viscosity liquids. 

1. Introduction 
The dynamics of free liquid drops has long been a subject of interest (Wang, Saffren 

& Elleman 1974), both for the sake of basic scientific understanding as well as for 
various applications in meteorology and chemical industry. The rigorous treatment of 
the problem of liquid drops oscillating in a gravitational field is complicated by the 
fact that, for most droplets of practical size, surface-tension forces and gravity are 
two competing factors influencing the dynamics of such oscillations. This is the limita- 
tion inherent to all laboratory work. Experiments carried out in the low gravity of 
space flight may not suffer from such interference, but other complications arise from 
the remote operations (Wang 1979; Jacobi et al. 1979). I n  immiscible liquid systems, 
the effects of gravity can be made negligible, although other difficulties arise owing to 
the mass loading from the outer host liquid, from boundary layer dissipation, as well 
as from the external field used to excite the drop oscillations. Both theoretical and 
experimental treatments of liquid-drop oscillations have appeared in the literature 
(Miller & Scriven 1968; Marston & Apfel 1980) although they have been restricted to 
the limiting case of small-amplitude vibrations. In  this paper we would like to report 
on the first part of our detailed study of drop-shape oscillations in immiscible liquid 
systems. Here, we shall confine our attention to  small-amplitude vibrations (i.e. 
AD/D < @ I ) ,  while a companion report (Trinh & Wang 1980) describes our results 
in the large-amplitude region (i.e. AD/D > 0.1). Such a separation of the subject 
matter only reflects the fact that the phenomena we observed in the large-amplitude 
region could no longer be described by the existing linear theory. It should be noted, 
however, that there is no arbitrary threshold for the value of the oscillation amplitude 
above which nonlinear effects are observed. 

In  this particular paper, we shall be interested in the measurement of the first few 
resonance frequencies and thc damping constant in the small-amplitude region as 
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both the drop size and the viscosity are varied. Viscosities varying between 1-3 and 
130 c8t will be studied, and the drop diameter will range between 0.5 and 1.5 em. 
The experimental method involves acoustic levitation and radiation-pressure-force 
modulation (Marston & Apfel 1979). In addition to quantitative information about 
the various resonance modes of the drop, a qualitative treatment of the characteristics 
of the internal fluid particle flow field has also been obtained. Comparison with avail- 
able theoretical predictions was generally favourable when appropriate precautions 
had been taken to satisfy the theoretical assumptions. It then appears, at least for the 
stea-ly-state or long-time behaviour, that the linear theory yields satisfactory answers 
to  the problem a t  hand. KO detailed study of a possible transient regime has been 
carried out in this work. 

Vl'e shall first undertake a short summary of the published theoretical results. We 
then describe the experimental apparatus and methods will then follow. A discussion 
of the experimental results and a comparison with the theory will close the paper. 

As a final general remark, we would like to point out that  the present experimental 
technique minimizes the external effects upon the drop's behaviour; such interference 
cannot, however, be totally eliminated. An absolutely rigorous comparison with 
theoretical claims cannot be obtained, although we feel that at least for small- 
amplitude oscillations we are fairly close. 

2. Theoretical background 
Miller & Scriven (1968) have provided a rather comprehensive theoretical analysis 

of the natural, small amplitude, shape oscillations of a drop by using the normal-mode 
framework. Marston (1980) has offered an independent derivation for the case of a 
liquid drop immersed in a fluid of similar properties, adding a small correction term 
to the damping constant. Prosperetti (1980) has obtained a solution to the initial- 
value problem, and has provided theoretical predictions conceriiing the beha1-iour of 
a freely oscillating drop in the early transient period. 

An expression for the Lth resonant mode frequency of a driven oscillating drop is 
given by 

( 1 )  (dL = (I$ - 4ao*h + $9, 
where oI, is the angular response frequency, and (02 is Lamb's natural resonance 
frequency (Lamb 1932) expressed as 

R is the radius of the undisturbed drop, r is the interfacial tension. and p ,  and po the 
density of the inner and outer liquid respectively. a is given by 

pi and ,uo being the dynamic viscosity of the two liquids. 

~ r , l ,  expressed as 
The free decay of an oscillating drop is characterized by the damping constant 

(1) 71,' = &aUp + ; y - ;a2, 
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where 

One might notice that the expression for the damping constant 7:* contains a term 
proportional to the square root of the natural resonance frequency. This term has 
been attributed to the dissipation arising in the boundary layer around the drop. The 
second term in (4) is associated with viscous dissipation within the bulk of the liquids, 
and is equivalent, to the damping normally associated with the well-known damped 
harmonic oscillator. 

The results presented here are valid when the assumptions of small-amplitude 
oscillations, vanishing tangential stress sources a t  the drop boundary, freedom from 
contamination, and the absence of internal circulation within the drop are satisfied. 
No dependence upon the oscillation amplitude for the resonance frequency or damping 
constant can be arrived at, and the various resonance modes are assumed to be un- 
coupled. One might also note that each mode of oscillation denoted by an integer L 
is actually degenerate. For example, in the fundamental-mode case where L = 2 ,  
there are five degenerate modes (corresponding to the integers m = -t 2 ,  & 1,O) having 
the same frequency, but which differ in their geometry of oscillation. In this work we 
shall restrict ourselves to the axisymmetric mode (m = 0) .  The axis of symmetry 
will be that of the acoustic field, as will be shown below. 

3. Experimental background 
Generalities 

A liquid drop can be trapped a t  a stable position in an acoustic standing wave existing 
in a resonant cavity filled with liquid. The static equilibrium shape of the drop can be 
controlled by varying the magnitude of the acoustic radiation force, which is, to 
second order, proportional to the square of the magnitude of the first-order acoustic 
pressure. In  this case the cavity is of rectangular geometry, and the axis of symmetry 
is taken as its vertical axis. Depending upon the standing acoustic wave, or the pres- 
sure intensity, a drop may be given the shape of a prolate spheroid, an oblate spheroid, 
or a nearly perfect sphere. 

Shape oscillations are induced through a low-frequency modulation of the acoustic 
radiation force. The excitation can be that corresponding to either a periodic elonga- 
tion of the drop at  the poles, or a periodic compression of the drop at  the poles. The 
restoring force is, in the ideal case, provided only by the interfacial tension which 
tends to drive the drop back to the equilibrium shape. For low-amplitude vibrations 
both modes will yield the same results for the resonance frequency, although this shall 
not be the case for large displacements (Trinh & Wang 1980). 

Various liquids have been used for both drop and host media. First the combination 
of a phenetole drop suspended in a 1 : 2 by volume mixture of methanol and distilled 
water was used. Next, various viscosity grades of Dow Corning silicone oil (5-200 cSt) 
were mixed with carbon tetrachloride to form drops which were suspended in distilled 
water. All drop liquids were coloured with oil-soluble dyes. 

The acoustic frequencies were either 22 kHz ( A  N 6.75 cm in water) or 66 kHz 
( A  2i 2.25 cm in water). For a water host the IcR parameter had values between 0-23 



456 

I 

PSD 
4 - 

0 
DVM CRO 

I * 
6 ,l x - Y  

FIGURE 1. The cxperimental apparatus. 1 is the LUCitQ acoustic cell, 2 is the piezoelectric trans- 
ducer, 3 is a hydrophone, 4 is a variable phase shifter, 5 is a photodetector, 6 is a balanced 
modulator. The 2 x j ,  frequency doubler supplies a reference signal with a determined phase 
relationship with rcspect to the hydrophone signal. 

and 0.69 a t  22 kHz, and between 0.69 and 2.1 a t  66 kHz. Here k denotes the magnitude 
of the acoustic wave vector (27rlh) and R is the radius of the drop. 

The drop oscillation amplitude is monitored using an optical detection technique : 
a slit parallel or perpendicular t o  the axis of symmetry is uniformly illuminated, the 
shadow of the drop is then centred across the slit, blocking some of the light. As the 
drop oscillates, the light intensity detected by a photo-transistor varies periodically 
in phase. Up to reasonably large amplitude the response has been found to  be approxi- 
mately proportional to the drop deformation. If the drop axis rotates, however, the 
detector will no longer yield a true maximum amplitude variation. 

The apparatus and method 
The hardware. A schematic representation of the experimental apparatus is given by 
figure I .  The acoustic cavity is made from a Lucite rectangular box with flat parallel 
walls ( 1 ) .  A hollow piezoelectric cylinder ( 2 )  with an aluminium plate glued with 
epoxy resin to one end provides a bottom to the box. The top of the cavity is a flat 
and rigid reflecting plate. The transducer can be driven in its fundamental longitudinal 
resonance (approx. 22 kHz), or at its third harmonic (approx. 66 kHz). The height 
of the resonant cavity may be adjusted by changing the liquid path, but the cross- 
section remains fixed. At 22 kHz and a cavity height of 11.5 em, the acoustic pressure 
field has three equally spaced pressure maxima along the vertical central axis of 
symmetry. I n  any particular plane perpendicular to this axis, the pressure is a mono- 
tonically decreasing function of the distance from the centre. With this particular 
pressure distribution, a drop having a higher compressibility than the host liquid will 
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find a stable equilibrium position near the acoustic pressure maxima. A theoretical 
analysis of the translational force of acoustic radiation pressure in an immiscible liquid 
system has been provided by Yosioka & Kawasima (1955). 

In  order to drive the drop into oscillations, the acoustic pressure intensity is time- 
modulated a t  low frequency by superimposing two pressure waves of slightly different 
frequencies a t  the drop position. The difference frequency (denoted by 2fm) will be 
the acoustic-force modulation frequency. This was realized in practice with a balanced 
modulator multiplying a high-frequency carrier wave (fc = 22 kHz or 66 kHz) by a 
low-frequency signal f m .  The two resonant frequencies of the cavity (22 or 66 kHz) 
may be used for either levitation or oscillation. For example, the simplest situation 
would involve only a 22 kHz signal multiplied by a low-frequency wave. This com- 
bination would achieve both stable levitation and drop-shape oscillation for a SUB- 
ciently small value of the density mismatch. One might also use a 66 kHz signal 
instead of the 22 kHz wave. In  general, the first combination would provide a drive 
where the drop is compressed at  the poles, and the second combination an elongation 
of the drop at the poles. 

Data-analysis methods. The signal from the photodetector can either be analyzed 
directly on the oscilloscope, or through a lock-in amplifier (PSD on figure 1) for the 
extraction of more precise phase information. A reference wave a t  the force modula- 
tion frequency is provided by a frequency doubler (2fm on figure 1). An oscilloscope 
trace of such a reference signal is shown in figure 2, together with the output of a 
pressure hydrophone placed in the liquid cavity and driven by a 22 kHz signal multi- 
plied by a 4 Hz wave. This particular picture describes a reference wave where the 
peak positive displacement is shifted by + 90" with respect to the peak of the acoustic 
pressure swing. The acoustic pressure squared, i.e. Pr K The time average in 
this case is performed over the period of the high-frequency carrier wave f;'. If the 
acoustic pressure is given by 

then the force is 

The positive peaks for Pr should be in phase with those of Pat. The time variation and 
phase relationship of the radiation-pressure force and the reference wave should then 
be like those depicted in figure 3. A photodetector output in phase with this reference 
signal should then be that of a drop response in phase quadrature with the driving 
force. 

One should note that the time average over f;: does not yield a zero radiation- 
pressure force, i.e. 

(Pr)  cc(cos2wmt) = (~( l+cos2wmt)) .  (8) 

There remains a steady-state force acting on the drop, together with a slow time- 
varying driving force. This steady force, if large enough, will deform the drop into a 
non-spherical equilibrium shape. For lowamplitude oscillations such distortion will 
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FIGURE 2. Oscilloscope traces of hydrophone output (envelope), and reference signal. Here the 
reference signal peak is shifted by + 90° with respect to the peak of the hydrophone output 
signal. 

Force 

Referena 
voltage 

FIGURE 3. Time variations of the acoustic radiation force and of the reference wave. 
The latter wave is phaseshifted by -k 90". 

be small (less than 1 yo deviation from the spherical shape), but i t  will become sig- 
nificant when large-amplitude oscillations are considered. 

Steady-state measurements can be obtained together with swept-frequency res- 
ponses. A slow linear sweep for the modulation frequency f ,  allows the determination 
of the resonance frequency spectrum. Care must be taken to  sweep very slowly in 
order to obtain the true amplitude resonance curve. 

The phase of the drop response to steady-stat,e excitation is measured by a lock-in 
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amplifier as a function of frequency. The damping constant for the fundamental 
mode may be obtained through such a measurement (Marston & Apfel 1980). In  
general, however, our decay constant results have been gathered through direct 
measurements on photographs of oscilloscope traces obtained during free decay. A 
faster but less accurate method would be to measure the width of the resonance curve. 

Steady equilibrium shapes of drops were determined through magnified still photo- 
graphs. The dynamics of the oscillations were also analysed through high-speed 
cine films. 

4. Resonance frequencies 
Fundamental axisymmetric mode ( L  = 2, m = 0) 

Generalities. The resonance frequency of the fundamental mode has been measured 
as a function of size and for various liquids. In  all cases the density mismatch between 
the drop and host liquids was less than 1 yo. 

When measuring the resonance frequency by maximizing the quadrature response, 
the precision can be as high as 1 part in 2000. The repeatability of such a measurement 
on different drops, however, is strongly affected by the high sensitivity of the inter- 
facial tension to the variations in the level of contaminants found in both the drop 
and host liquids. Two observed phenomena might be the symptoms of such a con- 
tamination problem. First, a slow but steady decrease in the measured frequency can 
be observed in time. The maximum recorded decrease in frequency was about 5 yo 
after 8 continuous hours of levitation of a silicone-CC1, drop in distilled water. This 
slow change could be attributed to both a gradual modification of the properties of the 
drop interface and to the small temperature rise (approx. 0-5 "C per hour) in the 
levitation cell. The second observed phenomenon is a small scatter in measured 
resonance frequency for different drops of the same liquid and size (the volume of the 
drop can be controlled reliably within f 0.2 yo with a calibrated screw syringe). The 
maximum amplitude of such a scatter may reach 2 yo for the same batch of prepared 
drop liquid and the same host sample. This will be the important limiting factor when 
the accuracy of this method is assessed. 

Size dependence of f , .  Figure 4 is a logarithmic plot of the measured frequency 
squared fi as a function of the cube of the drop radius R3 for a phenetole drop 
(1-22cSt) in a mixture of water and methanol. A linear least-square fit procedure 
yields the power law 

f2 cc B-1.51. 

This result is very close to  Lamb's theoretical formula, which yieldsf, cc R-1.50. 
As indicated above, the experimental uncertainty has been assessed to be less than 

& 2 yo. This figure is the maximum scatter obtained through measurements on 
several (approx. 5 )  drops of the same radius, and reflects the combined effects of 
contaminants, temperature change, drop-volume inaccuracy, and experimental error. 

The period a t  resonance, determined by measurements on the oscilloscope trace 
during steady-state driven oscillations, was also compared to that measured during 
free decay. Within the measurement error ( 1 yo) the two periods were the same when 
the drive frequenvy was that yielding a + 90" phase shift for the drop response with 
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FIGURE 4. Data for phenetole drops (density approx. 0.96 g/cm3) in distilled-water/methanol 
mixture. Thc square of the fundamental resonance frequency is plotted versus the cube of the 
drop radius on a logarithmic scale. Thc kinematic viscosity of phenetole is about 1.22 cSt, 
and the approximate interfacial tension is 16.5 dyn/cm. 

respect to the drive. The resonance frequency determined a t  steady state was thus 
approximately the same as that of a freely decaying drop. 

Figure 5 displays similar logarithmic plots for a series of mixtures of silicone oil 
with CCl, of various viscosities. The drops were suspended in distilled water. A least- 
square fit also yields coefficients very close to - 1.5. The various viscosity grades of 
the mixtures used had slightly different interfacial tensions, and consequently i t  was 
not possible to study the effects of viscosity upon the resonance frequency. 

All the above measurements have been obtained with a 22 kHz standing wave used 
for levitation, and a modulated 66 kHz wave for the oscillation drive. It has been 
found that for small amplitude the results were, within experimental uncertainty, 
independent of the nature of the acoustic field. 

Dependence o n  static distortion. An inspection of the static equilibrium shape of the 
levitated drop also revealed that the distortion due to  buoyancy and radiation pres- 
sure forces (both static and time varying) was under 1 % from perfect sphericity for 
all the measurements reported here. We shall therefore assume that the effects of such 
small non-sphericity are negligible. 

We have, however, also investigated the effects of more substantial distortions 
upon both the resonance frequency and the damping constant. This can be done by 
adding a static levitating standing wave to the time-modulated field, and by increasing 
its intensity. Both static oblate and prolate distortions may be obtained by using the 
appropriate frequency. They have been shown to have similar effects. 

Even for small-amplitude oscillations, the resonance frequencies for the funda- 
mental and first higher modes have been found to increase with distortion. Figure 6 
displays the results for a 1.0 cm3 phenetole drop and a 1.5 cm3 silicone-CC1, mixture 
drop. Both drops have been statically deformed into the oblate spheroid shape. The 
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FIGURE 5 .  Experimental results for fiindamental frequencies of drops of silicone/CCI, mixtures 
of various viscosities immersed in distilled water (density approx. 0.99 g/cm3, interfacial 
tension between 35 and 40 dyn/cm). f z  is plotted as a function of R 3 .  The kinematic viscosity 
ranges between 3.2 and 120.4 cSt. Drop radii range between 0.49 and 048 em. 

phenetole drop is driven into oscillation by a periodic compression a t  the poles, while 
the silicone-CC1, drop is driven by a periodic elongation a t  the poles. The distortion 
is characterized by the ratio of the long axis of the drop to the short axis (TV/H) .  The 
percentage distortion is plotted on the horizontal axis, and the percentage increase in 
the fundamental resonance frequency f2 on the vertical axis. An approximately 
linear variation of Af2/f2 with increasing distortion is observed for both drops. I n  
view of these results, a direct determination of the interfacial tension from acoustically 
measured resonance frequencies might not be as straightforward as i t  first appears. 
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FIGURE 6. Variations of the fundamental resonance frequency with oblate deformation. The 
drops are statically deformed by tlie acoustic field. The resonance frequency is measured for 
small-amplitiitlt oscillations. ( a )  Silicone/CCl,, 1.5 cm3 drop; ( b )  Phenetole, 1 em3 drop. 

Higher-order modes ( L  = 3, 4, 5; m = 0) 

The higher-order resonance modes are increasingly more damped than the funda- 
mental, thus comparatively larger forces (i.e. acoustic pressures) are required to 
excite them. Under these conditions the static deformations of the drops are much 
more pronounced than during the fundamental-mode excitation. The measured fre- 
quencies will not then be those corresponding to a nearly spherical equilibrium shape 
as in the case discussed above. 

Table 1 lists in columns 1-4 experimental values for the frequency of the modes 
corresponding to I, = 2-5, for drops of both phenetole and silicone-CC1,. The ratios 
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Silicone/CCl, in 

Experimental 
water; 3.2 cSt, 1.9 cm3 

Lamb’s formula 
Theory (Marston 1980) 

Silicone/CCl, in 

Experimental 
Theory 

Silicone/CCl, in 

Experimental 
Theory 

water; 3.2 cSt, 1.7 ems 

water; 3-2 cSt, 1-5 em3 

Phenetole in water/ 
methanol; 1.2 cSt, 1.5 cm3 

Experimental 
Theory 

3.66 6.81 10.21 13.GB 1.8G 2.79 3.73 
1.86 2.79 3.74 

3.87 7 .21  10.45 - 1.86 2.70 - 
1.86 2.81 - 

2.97 5.54 7-85 10.47 1.87 2.65 3.52 
1.85 2.90 3.65 

TABLE 1 

fJf2 are listed in columns 5-7. The theoretical predictions are listed under the experi- 
mental values in columns 5-7. 

Figure 7 shows photographs of drops oscillating in the axisymmetric modes L = 2-4 
(m = 0). The oscillation amplit,udes shown here are quit,e appreciable and cannot be 
viewed as being small. 

Swept frequency response 

I n  order to obtain the true resonance curve of a drop, a very slow sweep through the 
frequency spectrum is required. For a 2.0 cm3 drop a sweep rate of 10 mHz/s was 
adequate for the fundamental mode: the resonance curve obtained by such a sweep 
agrees with that obtained through a series of discrete steady-state measurements. 

Figure 8 reproduces the experimental resonance curve for the fundamental mode 
for a 1.5 cm3 silicone-CC1, drop in water. The shape ofthe curve for the fundamental 
mode is not quite symmetrical, and is characteristic of the response of a damped 
oscillator. For the case of a linear, damped harmonic oscillator, the resonance curve 
for tlhe displacement has its maximum shifted to  lower frequency with respect to  the 
‘natural’ frequency because of the damping term. The Q value of the fundamental 
resonant mode shown here is about 13 (Q = f2/Af, where Af is the width of the 
resonance curve). 

Figure 9 reproduces the mode spectrum of a 1.9 em3 silicone-CC1, drop in water. 
The various modes of oscillations are relatively well separated, and no unexpected 
resonance peak is found. This resonance-mode distribution is modified when larger- 
amplitude oscillations are studied. No quantitative information can be obtained from 
the relative heights of the various resonance peaks because the coupling of t8he radia- 
tion pressure forces to the liquid drop is not necessarily the same for different oscilla- 
tion modes. 
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L = 2  

L = 3  

L = 4  

FIGURE 7.  Photographs of drops oscillating in tlie L = 2, 3, 4 axlsymrnotric (m = 0)  modes. 
The arnplitrides of the osc~llat~ons shown hcrc are much larger than those studied in this pnpcr. 
Thry arc sliowvn lirrr for the pllrpose of IllListratinp thr var1011s sliapcs. 

5. Damping-constant measurements 
The damping constant for the fundamental mode has been measured as a function 

of drop size, and of the viscosities of the inner and outer liquids. For viscosities lower 
than 100 cSt and drop volumes larger than 0.5 em3, data were obtained from photo- 
graphs of oscilloscope traces taken during free decay. The experimental uncertainty 
was estirnaterl to lie aronnd & 5 %,. Determination of tlie Q value of the resonance 
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FIGURE 8. Swept frequency response of IL 1.5 em3 sdicone/CCl, drop (3.2 cSt) iinrncrsrd in 

distilled water. Thr wsoiiance c11rve is for fundamental L = 2 Inotlr. 

3 f (Hz) 144 

FIGURE 9. Resonant-mode spectrum of a 1.9 ern3 silicone/CCI, drop. 

yielded damping-constant results which were generally about 10 yo lower than the 
free decay data. Steady-state measurements through the frequency-phase relation- 
ship were characterized by a substantial scatter (16-20 %) of the results, although the 
average values were still within 10 yo of the free-decay data. Of the three available 
methods, the one involving free-decay traces has been judged the most reliable and 
consistent. This is the method with which the bulk of the experimental data was talieri. 
Figure 10 displays the photographs of n fcw decay curves for vai*ioiis viscaositics. 
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The cbxpcrirncntal results on the damping constant for phenetole (1.22 eSt), and 
for a series of niixtiircs of silicone oil and CCI, are given as functions of tlie drop radius 
in  figure 1 1  a. l'henetole is characterized by tlie set of data with the lowest values. The 
increasing values of 72.' are those for mixtures with kinematic viscosity equal t o  
3.25, 6.5,  16.5, 68.6 and 120.4 cSt, in this order. 

A lincar least-sqrinrc fit of the phenetole data yields a power law 
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Viscosity (cSt) 

FIGURE 11. ( a )  Damping constant for various viscosity grades as a function of drop radius. 
0 ,  1.2; 0, 3.2cSt; A, 6.5 cSt; 17, 16.5cSt; B, 36.8cSt;  +, 68.6cSt. ( b )  Damping constant 
for various sizes as a function of kinematic viscosity. 0 ,  1 . 3  cm3; B, 1 .1  cm3; 0, 0.9 cm3; 
m, 0.7 a n 3 ;  @, 0.5 cm3. 

Although similar least-square fits of the data have been attempted for all the other 
liquids, the correlation obtained was not good. The resulting coefficients were also 
characterized by a substantial scat'ter. I n  addition to the inherent uncertainty, this 
scatter might indicate that the radius depcndcnce of 7y1 is riot redly well represented 
by a simple power law of the type R-J. 
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Volumc (ctn3) 0 . 5  0.7 0.9 1.1 1.3 

Damping constant (s-') 

1.5 

r- 
Plienetolc (1.22 cSt) 

Expcrirnent 
Theory (Marston 1980) 

Expcrirnent 
Theory 

Experiincnt 
Tlicory 

Experinicrr t 
Theory 

Hxperinient 
Theory 

I<xperirncm t 

Silicone/CCI, (3.2 cSt )  

Xilicone/CCl, (6 5 cSt) 

Silicone/CCI, (16  5 cSt) 

Silicone/CCl, (36.8 rSt) 

SiliconcfCCl, (68.6 c$t) 

Tlleory 

1.43 1.26 
1.28 1.06 

2.09 1.61 
1.54 1.27 

3.13 2.43 
"!I5 2.40 

4.40 3.87 
5.12 4.14 

- - 
TABLE 2 

1.06 0.98 0.93 
0.90 0.80 0.73  

1.38 1.28 1 .16  
1.09 O . 9 G  0.8!) 

1.44 1.32 1.19 
1.34 1.18 1.07 

t.83 1.58 1.46 
2.08 1.82 1.65 

3.06 2 . 6 3  2.39 
3.5% 3.10 2.71) 

4.97 3.88 - 
5.88 5.16 - 

0.94 
0.75 

Figure 1 1  b is a plot of the same experimental values as a function of viscosity for 
the various drop sizes. The host liquids used in these results are a water-methanol 
mixture (v N 1.8 cSt) for phenetole, and distilled water (approx. 1 . 1  cSt) for the 
silicone-CC1, drops. Table 2 lists the experimental values together with theoretical 
predictions for comparison purposes. The theoretical damping constants have been 
calculated under the assumption that the expression ( 1 )  for the resonance freyucnry 
is accurate. 

One might also note that, as in the case of the resonance frequency, the damping 
coefficient appears to depend on the duration of suspension of the drop. A fast in- 
crease in 7;l with time takes place initially, and then gives way to a slower inc~rease. 
This might be attributable to a change in the interfacial pi*operties of the liquids. 

6. Internal fluid-particle flow 
The motion of the drop-fluid particles during oscillation was described by Lamb in 

the  case of small-amplitude slow vibrations in the fundamental mode. His predictions 
are found to agree with the outcome of our qualitative photographic study of intcinal 
flow. 

The motion of the fluid inside the drop can be rnade visible by the addition of quasi- 
neutrally buoyant tracer particles. These markers should be small enough to follow 
the fluid motion, but large enough to scatter sufficient light for detection. In this work, 
we have used organic-dye particles in the silicone-CC1, mixtures. An excess arnount 
of dye particles will remain suspended in tlhe drop for a reasonably long time (over a. 
few hours). The drop is illuminated by a thin sheet of light, arid the 90" scattering is 
photographed 1vitl-i high-speed film. lkpending npon the intcvisitj. of the scant teretl 
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( C )  (d )  
FIGURE 12. Flow patterns of suspended dye particles in drops oscillating in the L = 2 and 

L = 3 modes. ( d )  shows the dye particles inside a stationary drop. 

light, the exposure time can be reduced to 0.5 s with 3000 ASA films and an f / 2 5  lens. 
Even-shorter exposure times may be obtained with faster lenses and films, or with a 
more intense illumination. 

A detailed analysis of the particle motion in the transient stages is in the planning 
phase. At the present time we are only concerned with steady-state configurations. 
In  addition, an accurate analysis of the particle flow field requires a correctim for the 
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distortion caused by the curved surface of the drop and the difference in index of 
refraction between the two liquids. At the present time, however, we are restricting 
ourselves to a qualitative discussion. 

Figure 12 shows photographs taken during steady-state driven oscillations in the 
L = 2, m = 0 and L = 3, m = 0 modes, as well as in the stationary state. The exposure 
times are all 2 s. For the L = 2 mode this corresponds to about the time for 5 complete 
oscillations, while the drop undergoes about 9 complete oscillations for the L = 3 mode. 
Only particles within a very thin slice a t  the mid-plane of the drop are illuminated. 

Longer-time-exposure photographs (up to 5 min) of stationary drops have not 
revealed any steady motion within a levitated drop a t  equilibrium. This would suggest 
that gravity, acoustic forces, and streaming in the outside liquid do not cause any 
significant steady flow when the acoustic pressure remains low. A study of the internal 
flows resulting from acoustically distorted drops will be reported in a future com- 
munication. 

By inspection of figure 12, one can find a region of almost stationary particles near 
the centre of the drop, both for the fundamental as well as for the first higher mode. 
The fluid particles found there before oscillation will be likely to  remain there in- 
definitely if no other flow is induced. This might bear some relation to  the centring 
force observed when a second drop of immiscible liquid is placed inside the first 
oscillating drop. 

For the fundamental ( L  = 2) mode, the particle trajectories line up along hyper- 
bolas in the four quadrants as predicted by Lamb. A fourfold symmetry is observed, 
and the particle paths appear linear. The displacement amplitude increases with 
radial distance from the drop centre, and the maximum excursions are found a t  the 
boundaries along the vertical and horizontal symmetry axes. Because of the axi- 
symmetric nature of these particular oscillations and the requirements of volume 
conservation and incompressibility, the displacement amplitude is larger in the 
vertical-axis direction. 

One should remark that these simple flow patterns are not retained when the oscilla- 
tions grow to large amplitude. Our nonlinear study has revealed that a steady dis- 
placement of the particle trajectories is superimposed on this flow pattern. 

The drop-shape oscillations will induce vibration of the particles in the outside 
liquid found in a boundary layer. From similar photographic observations the thick- 
ness of such a layer has been estimated to  be as large as 30 yo of the drop radius for a 
drop of approx. 1 cm diameter, and a frequency of approx. 4 Hz. A significant amount 
of energy is thus transferred to the outside fluid, and quite obviously this will result 
in a major contribution to  the dissipation as derived from the theory. 

7. Data interpretation and discussion 
Resonance frequency 

The radius dependence of f2 has been found to be very close to Lamb’s power law 
R-1.5. This is in general agreement with the theory, which predicts only deviations 
less than 5 yo frorn the values calculated from Lamb’s formula. This particular point 
has not been checked, however, for a rigorous comparison would require a knowledge 
of the interfacial tension. This information is not available a t  the present time because 
the standard measurement techniques for that parameter do not yield reliable in- 
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formation when the density difference between the two liquids of interest is small 
(less than 1 yo in this case). Under these circumstances, only a comparison between 
the experimental ratios f L / f 2  of the resonance frequencies of the higher modes over 
the fundamental frequency and the theoretical predictions can be attempted. The 
results of such a comparison must be considered with caution, however, for the static 
shapes of the drops are not exactly the same when driving the fundamental and when 
exciting the higher modes, as we discussed above. It has been observed that the 
resonance frequency of a statically distorted drop (either in the prolate- or oblate- 
spheroid shape) is always higher than that of a spherical drop. Thus, if we denote by 
f i  aridf; those for a distorted drop, we would have the relationship 

The experimental values (obtained for a non-spherical drop) mould be higher than 
the true value of this frequency ratio. This discrepancy would presumably grow 
larger for higher-order resonance modes. 

Inspection of table 1 reveals that the theoretical values for the frequency ratios are 
in good agreement with the experimental data. Lamb’s predictions are about 4% 
too large for f 3 / f ,  and 8 yo too large for f 5 / f2 .  The experimental uncertainty has been 
estimated to be less than 4%. Hence, even accounting for the present uncertainty 
margin, the theoretical treatment appears to  provide a closer agreement than Lamb’s 
formula. 

One might also wonder about the extent to which the static component of the 
acoustic radiation-pressure force influences the dynamics of the motion. A systematic 
error in the resonance frequency may arise because of the additional restoring com- 
ponent from the acoustic field. The ratio of the interfacial force to the static acoustic 
force may provide an approximate value for the resulting frequency increase. The 
interfacial force Fb may be roughly evaluated as 2 m R  N 150 dyn for a 1 em3 drop of 
silicone-CC1, in water. The static acoustic force FA is estimated to  be a t  most 5 dyn. 
Thus, Fg/FA N 30, or acoustic force is approximately 3-3 Yo of the interfacial tension 
force. The subsequent change in resonance frequency should then be about + 1.8 yo. 
This is roughly the amount by which the acoustic measurements would overestimate 
the true resonance frequency according to the above simple reasoning. 

Damping constant 

Size dependence. From the experimental data, no simple function of the radius could 
be extracted, as had been possible with the resonance frequency. This is consistent 
with the theoretical claim that damping is significantly influenced by dissipation in 
the boundary layer around the drop. From table 2 one can observe that the radius 
dependence of ril for the various liquids of different viscosity appears to be in rough 
agreement with theoretical predictions, although the magnitudes are often signifi- 
cantly different. The discrepancy between the experiniental and theoretical values 
for 7;’ ranges between 5 and 30 yo for the lower-viscosity grades. This is quite reason- 
able in view of the fact that contamination of the interface could not be avoided. 

Viscosity dependence. The straight lines of figure 1 1  (b)  are plots of calculated 
damping constants derived from (1)-(5). Linear least-square fits of the data tend to  
yield a general agreement with this linear behaviour, although the experimental 
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Inside viscosity Outside viscosity 

1.05 cSt 

) 10cSt 
Experiment 
Theory (Marston 1950) 

1.05 rSt 

Theory 

Theory Experlmrntl 
Experiment] 
Theory 

16.5 cSt 

36.5 cSt 

20 cst 

1.1 cSt 

Damping constant (s-1) 

constants of proportionality are different from the calculated ones. The rates of 
increase of 7-1 found experimentally are smaller than those derived theoretically. This 
tends to be more prominent for larger drops. 

An interesting characteristic of these results may be found in the relationship 
between the experimental and calculated 7-1 as viscosity increases : for low viscosities 
the measured damping rates are higher than the results of calculations, but this 
relationship is reversed for the higher viscosities. It thus appears that the present 
theoretical treatments are more valid at low viscosity, or perhaps for the cases where 
outer and inner liquids have comparable viscosities. The physical origin of such a 
phenomenon might also be attributed to the inertia of the boundary layer. The damp- 
ing measurements were performed by abruptly shutting off the drive during steady- 
state oscillation. Presumably, the flow field just before the drive cut-off would be 
well-established with the fluid in the boundary layer oscillating with the drop boun- 
daries. The damping mechanism of the drop must be influenced by the inertia of the 
moving fluid in the boundary layer. In  this case, because the motion in the outer liquid 
is not damped as quickly as in the more viscous drop, there might be a residual drive 
supplied by the boundary-layer motion, thereby slightly decreasing the damping rate. 

Damping measurements have also been performed with different outer liquid 
viscosities. Table 3 summarizes the results. 10 and 20 cSt mixtures of water and 
glycerine were used as host liquids for 1.1 om3 drops of phenetole. The resulting 
increase in damping rate is larger than if the inside viscosity was raised by the same 
amount and the outside viscosity unchanged. This indicates that for the present drop 
size the influence of the outer fluid viscosity is more substantial than that of the 
inner fluid. 

An uncertainty is introduced by the time variation of the surface properties of the 
immersed drops. It was observed, however, that a state of slow change was always 
attained after levitation over about 30 minutes. The scatter was reduced significantly 
after precautions had been taken to  perform measurements during that stage. Another 
source of error affecting the accuracy of absolute measurements arises from the changes 
in properties of liquids used on different days. In  order t o  overcome this difficulty, 
the radius-dependence measurements were always made for a series of drops from 
the same batch of mixture and with the same host. The viscosity dependence of the 



Small-amplitude drop oscillations in immiscible liquid systems 473 

damping constant is more seriously affected by this drawback, and the results should 
be slightly more uncertain. 

Dependence of the decay rate on the levitation force. The decay rate has also been 
found to  increase when the intensity of a static levitating acoustic field is increased. 
With a 4 % distortion in t,he oblate shape, a 13 % rise in the damping constant has 
been obtained. Such a large increase cannot be explained by the higher resonance 
frequency alone, as suggested by the theoretical results (equation (4)). No explanation 
of such a phenomenon can be provided a t  the present time, but i t  strongly suggests 
that the dissipation rate of drop-shape oscillations is quite sensitive to  the influences 
of external forces. 

8. Summary and conclusion 
Driven shape oscillations of liquid drops under reasonably well-conttrolled condi- 

tions have allowed the determination of the resonance frequencies of the first few 
modes. The configurations of the oscillating drops resemble closely those predicted. 
The time dependence of the oscillation amplitude is very close to sinusoidal for free 
vibrations, but the time spent in the various configurations characteristic of each 
mode depends strongly on the acoustic drive for driven oscillations. For example, in 
the case of the fundamental axisymmetric mode, a freely oscillating drop spends only 
a very slightly longer time in the prolate configuration, while a driven drop might be 
found in the prolate shape during a longer, equal, or shorter time, depending upon the 
driving mode. 

For small-amplitude oscillations, a drop suspended in a host liquid behaves in a way 
very similar to the usual damped harmonic linear oscillator in many respects: the 
response to a sinusoidal excitation is almost purely sinusoidal, the frequency of 
maximum response is characterized by an approximately 90" phase shift between the 
drive and the response, the decay rate is roughly linear with the drop viscosity, and 
the resonance curve for the displacement has the familiar shape. 

An important difference arises from the presence of the outer support liquid which 
not only adds additional inertia, but also plays an important role in the dissipation 
mechanism, as predicted by the theory (Marston 1980). For low viscosity (less than 
20 cSt), and drop volumes between 0.5 and 2 om3 the dissipation mechanism is 
dominated by the energy loss through the boundary layer a t  the drop surface, As the 
viscosity of the inner fluid grows larger, however, the theoretical predictions appear 
to overestimate the dissipation rate. This has been tentatively attributed to the 
residual momentum of the boundary-layer fluid. Study of the internal fluid particle 
flow has revealed a quasi-potential flow field with no noticeable circulation, thereby 
confirming Lamb's predictions and the validity of the theoretical assumptions. 

The acoustical-levita~ion technique allows a non-invasive experimental study of 
the dynamics of oscillating drops if some precautions are taken to  minimize the in- 
fluence of the acoustic fields. A detailed quantitative analysis is needed in order to 
determine exactly the extent of the influence of acoustic forces, but it is reasonable to 
assume that, for very small levitating forces and oscillation amplitudes, their dis- 
turbing effect upon the dynamics of the drop vibrations is quite small. 

This work was carried out a t  the Jet  Propulsion Laboratory under Contract No. 
NAS 7-  100, sponsored by the National Aeronautics and Space Administration. 
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